On the modularity of certain functions from the Gromov–Witten theory of elliptic orbifolds

نویسندگان

  • Kathrin Bringmann
  • Larry Rolen
  • Sander Zwegers
چکیده

In this paper, we study modularity of several functions which naturally arose in a recent paper of Lau and Zhou on open Gromov-Witten potentials of elliptic orbifolds. They derived a number of examples of indefinite theta functions, and we provide modular completions for several such functions which involve more complicated objects than ordinary modular forms. In particular, we give new closed formulae for special indefinite theta functions of type (1,2) in terms of products of mock modular forms. This formula is also of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudoholomorphic curves in four-orbifolds and some applications

The main purpose of this paper is to summarize the basic ingredients, illustrated with examples, of a pseudoholomorphic curve theory for symplectic 4-orbifolds. These are extensions of relevant work of Gromov, McDuff and Taubes on symplectic 4-manifolds concerning pseudoholomorphic curves and Seiberg-Witten theory (cf. [19, 34, 35, 44, 46]). They form the technical backbone of [9, 10] where it ...

متن کامل

Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds

In this paper, we first give an intersection theory for moduli problems for nonlinear elliptic operators with certain precompact space of solutions in differential geometry. Then we apply the theory to constructing Gromov-Witten invariants for general symplectic manifolds.

متن کامل

Evidence for a conjecture of Pandharipande

In [3], Pandharipande studied the relationship between the enumerative geometry of certain 3-folds and the Gromov-Witten invariants. In some good cases, enumerative invariants (which are manifestly integers) can be expressed as a rational combination of Gromov-Witten invariants. Pandharipande speculated that the same combination of invariants should yield integers even when they do not have any...

متن کامل

Wall-crossings in Toric Gromov–witten Theory Ii: Local Examples

In this paper we analyze six examples of birational transformations between toric orbifolds: three crepant resolutions, two crepant partial resolutions, and a flop. We study the effect of these transformations on genus-zero Gromov–Witten invariants, proving the Coates–Corti–Iritani–Tseng/Ruan form of the Crepant Resolution Conjecture in each case. Our results suggest that this form of the Crepa...

متن کامل

On orbifold elliptic genus

Elliptic genus was derived as the partition function in quantum field theory [26]. Mathematically it is the beautiful combination of topology of manifolds, index theory and modular forms (cf. [15], [10]). Elliptic genus for smooth manifolds has been well-studied. Recently, Borisov and Libgober ([3], [4]) proposed some definitions of elliptic genus for certain singular spaces, especially for com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015